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Abstract: The orbital interaction between the sheets

of graphite slabs, in which small numbers of gheets (

are stacked in the ABAB fashion, is theoretically analyzed. We predict from the nodal properties in the interlayer
orbital interaction that the spacing between the graphite sheets should be large (smait) ieleeen (odd).

Results from density functional theory calculations with gradient corrections are in good agreement with this
theoretical prediction; optimized interlayer spacings show oscillatory behavior as a funatiohhef interlayer

spacing is predicted to be 3.58 and 3.30 A wineis 2 and 3, respectively. The spacing in the double-layer

slab is surprisingly large in comparison with the value of 3.35 A observed in natural graphite. The significant
features of the interlayer spacing in the graphite slabs are discussed in detail, with an emphasis on the aspect
of frontier orbital ideas and orbital symmetry concepts.

Introduction

Three types of stacking are known to exist in graphite: the
ABAB, ABCABC, and AAAA types? The most common form
of graphite has the ABAB stacking (the Bernal structure), and
natural graphite also contains the ABCABC stacking (the
rhombohedral structure) in a small ratio. In natural graphite,
the C—C bond length is 1.42 A within the sheets and the nearest-
neighbor sheets are separated by 3.35 A. The interlayer spacin
is approximately the sum of the van der Waals radii of the

carbon atom, and thus, it is widely accepted that the van der

Waals interaction plays a dominant role in determining the layer
structure of graphite. The AAAA stacking has not been observed
so far in natural graphite, but it is common for graphite
intercalation compounds (GICs) such as ¢#hd KG.!

About two decades ago, lijima reported from high-resolution
transmission electron microscopy (TEM) observations that

double sheets of graphitic carbon have extremely large interlayer
spacings compared with those in crystalline regions that consist

of a number of graphite sheétsReported large interlayer
spacings for double-layer graphitic carbon up to 3.84 A were
proposed to be a consequence of the relaxation of van der Waal

bonding between the sheets, due to crystalline defects and sma
cluster sizes. In 1991, lijima discovered carbon nanotubes in a

have turned much attention to the interlayer spacing in multi-
walled carbon nanotubes and graphitic nanopartic®sn et

al. reported from TEM measurements that large intershell
spacings of multiwalled carbon nanotubes, denotedyby fall

in the range from 3.59 to 3.62 AThis large intershell spacing

is attributable to the large curvature of small-diameter nanotubes.
A similar observation on the unusually large interlayer spacings

that range upda 4 A was made in the carbon material prepared

%rom heat treatment of pheneformaldehyde resin at600°C.®

Moreover, Bandow et al. recently observed from X-ray diffrac-
tion measurements that the averaged spacing of the double-layer
region between single-walled carbon nanohorns produced by
the CQ laser ablation of carbon target is 47AAnomalous
observations of the spacing in the double-layer regions in various
carbon materials have been repeatedly reported so far, but our
knowledge on the triple-, quadruple-, and quintuple-layer regions
is still lacking.

In previous worké~10 we investigated preferred structural
changes in one-dimensional and two-dimensional electronic
systems by analyzing the transition densitetween two bands

n the vicinity of the Fermi level, specifically for the bond-
ﬁength alternation of polyacene and the layer structures of
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graphite and arsenic. The preferred structures in these extended 3.6
systems can be viewed as second-order perturbation effects. We
examined in detail the interlayer interactions in graphite and
GICs and proposed that the ABAB stacking in graphite should
be a consequence of the orbital interaction between the nearest-
neighbor sheets rather than of generally accepted van der Waals.
interaction. st

The issue that we address in this paper is how the interlayer
spacing is affected in graphite slabs that consist of small
numbers of sheets. The present work is an extension of our
previous studies on the interlayer orbital interaction in graghite.
We discuss here significant nanometer-sized electronic features
of the interlayer spacing in the graphite slabs, with an emphasis
on the aspect of frontier orbital ideas and orbital symmetry
conceptgZ14

Interlayer Spacing in Graphite Slabs. We optimized the
structure of two-dimensional graphite slabs in which small
numbers If) of sheets are stacked in the ABAB manner. The
purpose of our calculations is to look in detail at how the 3.2
interlayer spacing changes as the thickness of the graphite slabs 1 2 3 4 5 6 7 8
increases fronm = 2. Trickey et al. reported from local density
approximation (LDA) calculations that the spacing of a double-
layer model is only 2% expanded in comparison with that of Figure 1. Optimized interlfayer spacings for the graphite slabs in Which
bulk graphite! However, such LDA calculations have a general small numbersr() of graphite sheets are stacked in the ABAB fashion.
tendency to underestimate interatomic distances in molecules ) . .
and solids. Perdew et al. demonstrated that generalized gradienV/unit cell (G) more stable than the AAAA stacking. This
approximation (GGAY¥ calculations are more accurate than local PFT method predicted the interlayer spacing of bulk graphite
spin density approximation calculations with respect to many With the ABAB stacking to be 3.26 A, which is in good
electronic properties. We thus employed a density functional 2greement with the observed value of 3.35 A. Thus, the method
theory (DFT) method with gradient corrections in this study. Of choice is appropriate for our purpose.
We applied a pseudopotential total-energy metHogith Calculated spacings are plotted as a functiom af Figure
CASTEP version 3.0. The wave functions of valence electrons 1; they show oscillatory behavior as the thickness of the slabs
were expanded in a basis set of plane wave with an energy cutoffchanges. No constraint of interlayer spacings was assumed for
600 eV. We used norm-conserving pseudopotentials in the n = 2. The variation in optimized interlayer spacings in a single-
Kleinman-Bylander representati#hoptimized using the scheme ~ slab model was very small, the values falling in the error range
of Lin et all® CASTEP approximates several integrals by Of the plotted squares. The interlayer spacing is large (small)
numerical summation over a finite numberlopoints on the ~ whenn is even (odd). This is an interesting nanometer-sized

3.4+

Interlayer spacing

3.3

basis of the MonkhorstPack schem& We used an 18point electronic effect that we do not intuitively expect. In particular,
set, which is sufficient to describe the band structure of graphite Whenn is 2, the interlayer spacing is surprisingly large (3.58
according to ref 15 and a supercell of 2.462.46 x 50 AS. A), but whenn is 3, it is small (3.30 A). In odd-numbered

The empty space between slabs is more than 30 A even in thegraphite slabs, the calculated spacings are close to that of bulk
thickest slab ofn = 7, being large enough to neglect the graphite. Clearly, the large spacings in the even-numbered
interaction between slabs. The accuracy of the computationalgraphite slabs do not result from nonperiodic effects such as
scheme was tested from calculations for bulk graphite with the crystalline defects and small cluster sizes because these models
ABAB and AAAA stacking modes; the ABAB stacking is 0.05 are perfect two-dimensional systems. We believe that this
— — - - - . significant structural feature should derive from the intrinsic
(11) Transition density is a beautiful concept written with perturbation
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Vegllazg;":;lgrjllih Ki;'7h5eory of Orientation and StereoselectioBpringer- graphite are _see_n in a_quar_num ch(_amistry textddokhe
(13) Woodward, R. B.; Hoffmann, RThe Conseration of Orbital interlayer orbital interactions in graphite are weak compared

SymmetryVerlag Chemie GmbH: Weinheim, 1970. with those within the sheet, but not negligiBkThe graphite-
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n ag‘;n;'ﬁgg’e\;,v"gyé N K 0 e eksen. G H. E.- Boetiger, 5. Hoffmann in terms of interlayer orbital interactiofsTaking
C.Phys Re. B 1992 45, 4460. T "7 these into account, we consider essential orbital features that
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J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, ; ;
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(17) Payne, M. C.: Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, &S shown in Figure 2.
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(18) Kleinman, L.; Bylander, D. MPhys Re. Lett. 1980 48, 566. (21) Lowe, J. PQuantum Chemistry2nd ed.; Academic Press: Boston,
(19) Lin, L. S.; Qteish, A.; Payne, M. C.; Heine, Yhys Re. B 1993 MA, 1993.
47, 4174. (22) Burdett, J. KChemical Bonding in Solig®©xford University: New

(20) Monkhorst, H. J.; Pack, J. Phys Re. B 1976 13, 5188.Cerius York, 1995.
2, Version 3.0; Molecular Simulations Inc.: San Diego, CA, 1997. (23) Kertesz, M.; Hoffmann, RJ. Solid State Cheni984 54, 313.



Interlayer Spacing in Graphite Slabs J. Am. Chem. Soc., Vol. 122, No. 48, 20(8Y3

This operator can be conveniently used for our theoretical
n Cn2==Cp, analysis on the ABAB stacking of graphite sheet, leading to
. the reduction of the size of unit cell. We took thaxis as the
. . . screw axis.

Hence, the crystal orbitals for the graphite slab indicated in
the left of Figure 2 can be written as

3 .
Cof="Cx2 Vi = Z z é(k1”1a1+k2”2a2)s|n( nqu) x
: e +
, : JN@ + 1) :
Ca1 2 sz_ém
. T
Cef : qu z {#1(x — v1a, X, — ;8,52 — &) +
a f’ ; Cim—cCp, x* ) Po(X1 — V181, % — 18,57 — qa)} (6)
C 1
z and
Figure 2. Schematic representation for the graphite slab in which .
sheets are stacked in the ABAB fashion. a i (kav1ag+kovap) ™9
Vie ki = Z Ze sin >
The jth molecular orbital of an isodistant one-dimensional N(n +1)9 n
chain in which each atom has an atomic orbjglis written
within the framework of the Hekel approximation as {P1(X — vy, %, — V8, Z — qa) —
ﬂJq PaXs — 121X, — 1,282 — &)} (7)
n+1 n + 1 (@) wherek; andk; are the wave vectors angf and a; are the

translation vectors that generate the lattice points on the graphite
where n is the number of atoms that constitute the chain. sheets.
Equation 1 is applicable to the description of the wave function ~ We found that the sine term of egs 6 and 7 plays a dominant
for the unit cell of the graphite slab. Let us next consider the role in determining the interlayer interactions in the graphite
orbitals of a single graphite sheet. Since the unit cell of a single slabs. Whem is odd & 2m +1), both the bonding and the
graphite sheet consists of two carbon atoms, the unit cell of the antibonding orbitals of = (n + 1)/2= m+ 1 have a node on
n-layer graphite slab hasZarbon atoms in it. It is the carbon  every even numbered sheet because of the following relation:
ladder chain indicated in the right of Figure 2. The bonding

and the antibonding orbitals for the Gnit in theqth sheet are Sin(nﬂ—{-ql) = s|r(nzq) 0 (q=2,4,86,..) (8)
q)g: \/i(¢ql+ ¢q2) 2) In such a case, there is no orbital amplitude on every even-
2 numbered sheet. Figure 3 shows the bonding and the antibonding
and orbitals for the unit cell of the triple-layer slab, from which we
can qualitatively derive crystal orbitals at akpoint using eqs
6 and 7. Wherj is 3, the interaction between the sheets is in
J (D1 — 9) ©)) phase, but whejis 1, there is always a node between the sheets.
In this way, the number of nodes in the orbitals increases with
respectively. Here we confined our discussion to:thigands, a decrease inwith respect to interlayer coupling since the 2p
and ¢q1 and ¢, are therefore the 2mtomic orbitals at the 1 atomic orbital has a node. There is a nice analogy between these
and 2 sites in the £unit cell, respectively. We took theaxis orbitals and wave functions of a particle in a box, as indicated.

as the stacking direction. From these expressions, the bondingAs shown in Figure 3, the orbitals pf= 2 have a node exactly
and the antibonding orbitals, with respect to the nearest-neighboron the central sheet and can be viewed as a kind of nonbonding
C—C bond, for the carbon ladder chain indicated in the right orbital; thus, in these orbitals, there is no net interaction between
of Figure 2 can be written as the nearest-neighbor sheets. However, note that the second-
nearest-neighbor interaction is in phase in these nonbonding

JTJq b 1 N 70 orbitals. On the other hand, wheris even, such a nonbonding
ZSI = Zsin( ) X orbital does not appear, due to symmetry restriction. Figure 4
n+1 n-+ 1 ntl&m \n+l shows the bonding and the antibonding orbitals for the unit cell

7 — + 7 — 1<i<n) (4 of the double-layer graphite slab. Whgrs 2, the interaction
{982~ aa) + ¢Sz —qa)y (1=] ) () between the graphite sheets is in phase, but wheri, there
is a node between the sheets.
We know that frontier orbital ideas and simple concepts of

1 0 7iq orbital symmetry?~14 are applicable to the understanding of
ZS'” q= Zsin( )x molecular and crystal structures. In those arguments, most
n+1 n-+ 1 n+18& n+1 of the responsibility for chemical structure and reactivity is

7 — _ 7— 5 placed on a subset of frontier orbitals and their symmetries.
{94(§2—43) ~ ¢Sz~ ga)}y () So let us next turn our attention to the orbitals of the graphite
respectively, where, is the translation vector along tlzeaxis slabs in the vicinity of the Fermi level. What we use here is

and§; is the screw axis operafdrthat rotates the orientation (24) (a) Imamura, AJ. Chem. Phys197Q 52, 3168. (b) Kollmar, C.;
of a unit cell by 180 with respect to the neighbor unit cells. Hoffmann, R.J. Am. Chem. Sod.99Q 112, 8230.
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Figure 3. Bonding and the antibonding orbitals for the unit cell of
the triple-layer graphite slab.

Figure 4. Bonding and the antibonding orbitals for the unit cell of
the double-layer graphite slab.
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the extended Hekel method?® which models general orbital

Yoshizawa et al.

Energy {eV)
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Figure 5. Band electronic structure for the single graphite sheet from
extended Haokel calculationsEr indicates the Fermi level.

extended Hakel calculations were performed with YAeH-
MOP 26

The well-known band electronic structure for the single
graphite sheet is shown in Figure 5. The unit cell of the graphite
sheet consists of two carbon atoms, and accordingly there are
two zr bands as indicated, tlrebands being crossed at the point
K (271/(3ay), 27/(3ay)). Note that the Fermi wavenumblerlies
at this important symmetry point.

Figure 6 shows the band electronic structures for the double-
and triple-layer slabs, in which the screw axis operator is not
used; we see four bands in the double-layer slab and six
bands in the triple-layer slab. Thesebands are significantly
split into the bonding and the antibonding sets at the pbint
(0, 0), but these bands are nearly degenerate at the point K.
Since thekg of the graphite sheet lies at this symmetry point,
the shapes and energies of the crystal orbitals in the vicinity of
the point K should play a dominant role in determining preferred
layer structures of the graphite slabs.

The highest occupied crystal orbital (HOCO) and the next
highest occupied crystal orbital (HOCO-1) at the point K in
the double- and triple-layer slabs from extendedckgl
calculations are shown in Figure 7. The “highest occupied state”
may be more appropriate for condensed matter physicists. These
crystal orbitals can also be generated from Figures 2 and 3,
according to egs 6 and 7. The HOCO in the double-layer slab
is out of phase while the HOCO-1 is in phase, with respect to
the interlayer coupling. This orbital feature could lead to a
significant effect on the layer structure. In the HOCO, there is
a node at the center of the two sheets. Such a nodal property
results in removal of electron density from this region of sgace,
and the two graphite sheets would experience repulsive force
if this orbital is occupied. We therefore expect that the spacing
in the double-layer slab should become large.

The state of affairs is a little different in the triple-layer

energy trends, band gaps, orbital interactions, and major graphite slab. The HOCO and the HOCO-1 are substantially

charge shifts well. Parameters used for the carbon atorhHiare
= —21.4 eV and; = 1.625 for the 2s atomic orbital, ar}, =
—11.4 eV and; = 1.625 for the 2p 2p,, and 2p atomic orbitals,

in which H; and ¢ are the orbital energies and the Slater
exponents, respectively. A 4R@oint set was adopted for the

degenerate at the point K. Thus, not only the HOCO but also
the HOCO-1 can play a dominant role in determining the

spacing in the triple-layer slab. The HOCO has a node between
the sheets, whereas the HOCO-1 has no orbital amplitude on
the central sheet. This interesting orbital character is a conse-

band structure calculations with respect to a symmetry line, and quence of the sine term in eq 6, and this is valid for all odd-
lattice sums were taken to the fifth-nearest neighbors. Thesenumbered graphite slabs. The antibonding nature of the HOCO

(25) (a) Hoffmann, RJ. Chem. Phys1963 39, 1397. (b) Hoffmann,
R.; Lipscomb, W. N.J. Chem. Physl962 36, 2179;1962 37, 2872.

(26) Landrum. GYAeHMORP(Yet Another Extended Hikel Molecular
Orbital Package), Version 2.0; Cornell University: Ithaca, NY, 1997.
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Energy (eV)
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Figure 7. Highest occupied crystal orbital (HOCO) and next highest
occupied crystal orbital (HOCO-1) at the point K in the double- and
triple-layer graphite slabs.

spacing should be large (small) whers even (odd). Results

M K r M from band electronic calculations of DFT type were in good
Figure 6. Band electronic structures for the (a) double- and (b) triple- agreement with this theoretical prediction. Optimized spacings
layer graphite slabs from extended ¢kel calculations. The interlayer ~ showed oscillatory behavior as a functionrofThe interlayer
spacings are 3.35 A. spacings were computed to be 3.58 and 3.30 A whisr2 and

3, respectively. The value in the double-layer slab is surprisingly

can increase the interlayer spacing, while the nonbonding naturelarge in comparison with 3.35 A observed in the crystalline
of the HOCO-1 can lead to the weakening of the repulsive region of natural graphite. These are intrinsic features in the
interaction caused by the HOCO. Considering the different goyble- and triple-layer graphite slabs. The significant features
electronic features of the HOCO and the HOCO-1, the interlayer qf the interlayer spacing in the graphite slabs were derived from

spacing s_hould be small in the triple-layer slab in_ ComMparison frontier orbital ideas and orbital symmetry concepts.
with that in the double-layer slab. The computational results

we have shown in the previous section are fully consistent with
our qualitative orbital interaction analyses.
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