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Abstract: The orbital interaction between the sheets of graphite slabs, in which small numbers of sheets (n)
are stacked in the ABAB fashion, is theoretically analyzed. We predict from the nodal properties in the interlayer
orbital interaction that the spacing between the graphite sheets should be large (small) whenn is even (odd).
Results from density functional theory calculations with gradient corrections are in good agreement with this
theoretical prediction; optimized interlayer spacings show oscillatory behavior as a function ofn. The interlayer
spacing is predicted to be 3.58 and 3.30 Å whenn is 2 and 3, respectively. The spacing in the double-layer
slab is surprisingly large in comparison with the value of 3.35 Å observed in natural graphite. The significant
features of the interlayer spacing in the graphite slabs are discussed in detail, with an emphasis on the aspect
of frontier orbital ideas and orbital symmetry concepts.

Introduction

Three types of stacking are known to exist in graphite: the
ABAB, ABCABC, and AAAA types.1 The most common form
of graphite has the ABAB stacking (the Bernal structure), and
natural graphite also contains the ABCABC stacking (the
rhombohedral structure) in a small ratio. In natural graphite,
the C-C bond length is 1.42 Å within the sheets and the nearest-
neighbor sheets are separated by 3.35 Å. The interlayer spacing
is approximately the sum of the van der Waals radii of the
carbon atom, and thus, it is widely accepted that the van der
Waals interaction plays a dominant role in determining the layer
structure of graphite. The AAAA stacking has not been observed
so far in natural graphite, but it is common for graphite
intercalation compounds (GICs) such as LiC6 and KC8.1

About two decades ago, Iijima reported from high-resolution
transmission electron microscopy (TEM) observations that
double sheets of graphitic carbon have extremely large interlayer
spacings compared with those in crystalline regions that consist
of a number of graphite sheets.2 Reported large interlayer
spacings for double-layer graphitic carbon up to 3.84 Å were
proposed to be a consequence of the relaxation of van der Waals
bonding between the sheets, due to crystalline defects and small
cluster sizes. In 1991, Iijima discovered carbon nanotubes in a
slaglike carbonaceous deposit grown on a negative electrode
as a byproduct of fullerene-rich soot.3 Several research groups

have turned much attention to the interlayer spacing in multi-
walled carbon nanotubes and graphitic nanoparticles.4 Sun et
al. reported from TEM measurements that large intershell
spacings of multiwalled carbon nanotubes, denoted byd̂002, fall
in the range from 3.59 to 3.62 Å.5 This large intershell spacing
is attributable to the large curvature of small-diameter nanotubes.
A similar observation on the unusually large interlayer spacings
that range up to 4 Å was made in the carbon material prepared
from heat treatment of phenol-formaldehyde resin at∼600°C.6

Moreover, Bandow et al. recently observed from X-ray diffrac-
tion measurements that the averaged spacing of the double-layer
region between single-walled carbon nanohorns produced by
the CO2 laser ablation of carbon target is 4 Å.7 Anomalous
observations of the spacing in the double-layer regions in various
carbon materials have been repeatedly reported so far, but our
knowledge on the triple-, quadruple-, and quintuple-layer regions
is still lacking.

In previous work,8-10 we investigated preferred structural
changes in one-dimensional and two-dimensional electronic
systems by analyzing the transition density11 between two bands
in the vicinity of the Fermi level, specifically for the bond-
length alternation of polyacene and the layer structures of
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graphite and arsenic. The preferred structures in these extended
systems can be viewed as second-order perturbation effects. We
examined in detail the interlayer interactions in graphite and
GICs and proposed that the ABAB stacking in graphite should
be a consequence of the orbital interaction between the nearest-
neighbor sheets rather than of generally accepted van der Waals
interaction.

The issue that we address in this paper is how the interlayer
spacing is affected in graphite slabs that consist of small
numbers of sheets. The present work is an extension of our
previous studies on the interlayer orbital interaction in graphite.9

We discuss here significant nanometer-sized electronic features
of the interlayer spacing in the graphite slabs, with an emphasis
on the aspect of frontier orbital ideas and orbital symmetry
concepts.12-14

Interlayer Spacing in Graphite Slabs. We optimized the
structure of two-dimensional graphite slabs in which small
numbers (n) of sheets are stacked in the ABAB manner. The
purpose of our calculations is to look in detail at how the
interlayer spacing changes as the thickness of the graphite slabs
increases fromn ) 2. Trickey et al. reported from local density
approximation (LDA) calculations that the spacing of a double-
layer model is only 2% expanded in comparison with that of
bulk graphite.15 However, such LDA calculations have a general
tendency to underestimate interatomic distances in molecules
and solids. Perdew et al. demonstrated that generalized gradient
approximation (GGA)16 calculations are more accurate than local
spin density approximation calculations with respect to many
electronic properties. We thus employed a density functional
theory (DFT) method with gradient corrections in this study.
We applied a pseudopotential total-energy method,17 with
CASTEP version 3.0. The wave functions of valence electrons
were expanded in a basis set of plane wave with an energy cutoff
600 eV. We used norm-conserving pseudopotentials in the
Kleinman-Bylander representation18 optimized using the scheme
of Lin et al.19 CASTEP approximates several integrals by
numerical summation over a finite number ofk points on the
basis of the Monkhorst-Pack scheme.20 We used an 18k-point
set, which is sufficient to describe the band structure of graphite
according to ref 15 and a supercell of 2.46× 2.46 × 50 Å3.
The empty space between slabs is more than 30 Å even in the
thickest slab ofn ) 7, being large enough to neglect the
interaction between slabs. The accuracy of the computational
scheme was tested from calculations for bulk graphite with the
ABAB and AAAA stacking modes; the ABAB stacking is 0.05

eV/unit cell (C4) more stable than the AAAA stacking. This
DFT method predicted the interlayer spacing of bulk graphite
with the ABAB stacking to be 3.26 Å, which is in good
agreement with the observed value of 3.35 Å. Thus, the method
of choice is appropriate for our purpose.

Calculated spacings are plotted as a function ofn in Figure
1; they show oscillatory behavior as the thickness of the slabs
changes. No constraint of interlayer spacings was assumed for
n g 2. The variation in optimized interlayer spacings in a single-
slab model was very small, the values falling in the error range
of the plotted squares. The interlayer spacing is large (small)
when n is even (odd). This is an interesting nanometer-sized
electronic effect that we do not intuitively expect. In particular,
whenn is 2, the interlayer spacing is surprisingly large (3.58
Å), but whenn is 3, it is small (3.30 Å). In odd-numbered
graphite slabs, the calculated spacings are close to that of bulk
graphite. Clearly, the large spacings in the even-numbered
graphite slabs do not result from nonperiodic effects such as
crystalline defects and small cluster sizes because these models
are perfect two-dimensional systems. We believe that this
significant structural feature should derive from the intrinsic
orbital nature of even-numbered graphite slabs.

Orbital Interactions in Graphite Slabs. To understand the
interesting size effect on the interlayer spacing in the graphite
slabs, let us consider interlayer orbital interactions between the
graphite sheets. General features of the orbital interactions in
graphite are seen in a quantum chemistry textbook.21 The
interlayer orbital interactions in graphite are weak compared
with those within the sheet, but not negligible.22 The graphite-
to-diamond high-pressure reaction was analyzed by Kertesz and
Hoffmann in terms of interlayer orbital interactions.23 Taking
these into account, we consider essential orbital features that
determine the interlayer interactions in the graphite slabs that
consist of small numbers of sheets stacked in the ABAB manner
as shown in Figure 2.
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Figure 1. Optimized interlayer spacings for the graphite slabs in which
small numbers (n) of graphite sheets are stacked in the ABAB fashion.
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The jth molecular orbital of an isodistant one-dimensional
chain in which each atom has an atomic orbitaløq is written
within the framework of the Hu¨ckel approximation as

where n is the number of atoms that constitute the chain.
Equation 1 is applicable to the description of the wave function
for the unit cell of the graphite slab. Let us next consider the
orbitals of a single graphite sheet. Since the unit cell of a single
graphite sheet consists of two carbon atoms, the unit cell of the
n-layer graphite slab has 2n carbon atoms in it. It is the carbon
ladder chain indicated in the right of Figure 2. The bonding
and the antibonding orbitals for the C2 unit in theqth sheet are

and

respectively. Here we confined our discussion to theπ bands,
andφq1 andφq2 are therefore the 2pz atomic orbitals at the 1
and 2 sites in the C2 unit cell, respectively. We took thez axis
as the stacking direction. From these expressions, the bonding
and the antibonding orbitals, with respect to the nearest-neighbor
C-C bond, for the carbon ladder chain indicated in the right
of Figure 2 can be written as

and

respectively, whereaz is the translation vector along thez axis
andSq is the screw axis operator24 that rotates the orientation
of a unit cell by 180° with respect to the neighbor unit cells.

This operator can be conveniently used for our theoretical
analysis on the ABAB stacking of graphite sheet, leading to
the reduction of the size of unit cell. We took thez axis as the
screw axis.

Hence, the crystal orbitals for the graphite slab indicated in
the left of Figure 2 can be written as

and

wherek1 and k2 are the wave vectors anda1 and a2 are the
translation vectors that generate the lattice points on the graphite
sheets.

We found that the sine term of eqs 6 and 7 plays a dominant
role in determining the interlayer interactions in the graphite
slabs. Whenn is odd () 2m +1), both the bonding and the
antibonding orbitals ofj ) (n + 1)/2 ) m + 1 have a node on
every even numbered sheet because of the following relation:

In such a case, there is no orbital amplitude on every even-
numbered sheet. Figure 3 shows the bonding and the antibonding
orbitals for the unit cell of the triple-layer slab, from which we
can qualitatively derive crystal orbitals at anyk point using eqs
6 and 7. Whenj is 3, the interaction between the sheets is in
phase, but whenj is 1, there is always a node between the sheets.
In this way, the number of nodes in the orbitals increases with
a decrease inj with respect to interlayer coupling since the 2p
atomic orbital has a node. There is a nice analogy between these
orbitals and wave functions of a particle in a box, as indicated.
As shown in Figure 3, the orbitals ofj ) 2 have a node exactly
on the central sheet and can be viewed as a kind of nonbonding
orbital; thus, in these orbitals, there is no net interaction between
the nearest-neighbor sheets. However, note that the second-
nearest-neighbor interaction is in phase in these nonbonding
orbitals. On the other hand, whenn is even, such a nonbonding
orbital does not appear, due to symmetry restriction. Figure 4
shows the bonding and the antibonding orbitals for the unit cell
of the double-layer graphite slab. Whenj is 2, the interaction
between the graphite sheets is in phase, but whenj is 1, there
is a node between the sheets.

We know that frontier orbital ideas and simple concepts of
orbital symmetry12-14 are applicable to the understanding of
molecular and crystal structures. In those arguments, most
of the responsibility for chemical structure and reactivity is
placed on a subset of frontier orbitals and their symmetries.
So let us next turn our attention to the orbitals of the graphite
slabs in the vicinity of the Fermi level. What we use here is

(24) (a) Imamura, A.J. Chem. Phys.1970, 52, 3168. (b) Kollmar, C.;
Hoffmann, R.J. Am. Chem. Soc.1990, 112, 8230.

Figure 2. Schematic representation for the graphite slab in whichn
sheets are stacked in the ABAB fashion.
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the extended Hu¨ckel method,25 which models general orbital
energy trends, band gaps, orbital interactions, and major
charge shifts well. Parameters used for the carbon atom areHii

) -21.4 eV andú ) 1.625 for the 2s atomic orbital, andHii )
-11.4 eV andú ) 1.625 for the 2px, 2py, and 2pz atomic orbitals,
in which Hii and ú are the orbital energies and the Slater
exponents, respectively. A 400k-point set was adopted for the
band structure calculations with respect to a symmetry line, and
lattice sums were taken to the fifth-nearest neighbors. These

extended Hu¨ckel calculations were performed with YAeH-
MOP.26

The well-known band electronic structure for the single
graphite sheet is shown in Figure 5. The unit cell of the graphite
sheet consists of two carbon atoms, and accordingly there are
two π bands as indicated, theπ bands being crossed at the point
K (2π/(3a1), 2π/(3a2)). Note that the Fermi wavenumberkF lies
at this important symmetry point.

Figure 6 shows the band electronic structures for the double-
and triple-layer slabs, in which the screw axis operator is not
used; we see fourπ bands in the double-layer slab and sixπ
bands in the triple-layer slab. Theseπ bands are significantly
split into the bonding and the antibonding sets at the pointΓ
(0, 0), but these bands are nearly degenerate at the point K.
Since thekF of the graphite sheet lies at this symmetry point,
the shapes and energies of the crystal orbitals in the vicinity of
the point K should play a dominant role in determining preferred
layer structures of the graphite slabs.

The highest occupied crystal orbital (HOCO) and the next
highest occupied crystal orbital (HOCO-1) at the point K in
the double- and triple-layer slabs from extended Hu¨ckel
calculations are shown in Figure 7. The “highest occupied state”
may be more appropriate for condensed matter physicists. These
crystal orbitals can also be generated from Figures 2 and 3,
according to eqs 6 and 7. The HOCO in the double-layer slab
is out of phase while the HOCO-1 is in phase, with respect to
the interlayer coupling. This orbital feature could lead to a
significant effect on the layer structure. In the HOCO, there is
a node at the center of the two sheets. Such a nodal property
results in removal of electron density from this region of space,14

and the two graphite sheets would experience repulsive force
if this orbital is occupied. We therefore expect that the spacing
in the double-layer slab should become large.

The state of affairs is a little different in the triple-layer
graphite slab. The HOCO and the HOCO-1 are substantially
degenerate at the point K. Thus, not only the HOCO but also
the HOCO-1 can play a dominant role in determining the
spacing in the triple-layer slab. The HOCO has a node between
the sheets, whereas the HOCO-1 has no orbital amplitude on
the central sheet. This interesting orbital character is a conse-
quence of the sine term in eq 6, and this is valid for all odd-
numbered graphite slabs. The antibonding nature of the HOCO

(25) (a) Hoffmann, R.J. Chem. Phys. 1963, 39, 1397. (b) Hoffmann,
R.; Lipscomb, W. N.J. Chem. Phys.1962, 36, 2179;1962, 37, 2872.
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Figure 3. Bonding and the antibonding orbitals for the unit cell of
the triple-layer graphite slab.

Figure 4. Bonding and the antibonding orbitals for the unit cell of
the double-layer graphite slab.

Figure 5. Band electronic structure for the single graphite sheet from
extended Hu¨ckel calculations.EF indicates the Fermi level.
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can increase the interlayer spacing, while the nonbonding nature
of the HOCO-1 can lead to the weakening of the repulsive
interaction caused by the HOCO. Considering the different
electronic features of the HOCO and the HOCO-1, the interlayer
spacing should be small in the triple-layer slab in comparison
with that in the double-layer slab. The computational results
we have shown in the previous section are fully consistent with
our qualitative orbital interaction analyses.

Concluding Remarks

We have considered the orbital interaction between the sheets
of the graphite slabs, in which small numbers of sheets (n) are
stacked in the ABAB fashion. We predicted from the nodal
properties in the interlayer orbital interaction that the interlayer

spacing should be large (small) whenn is even (odd). Results
from band electronic calculations of DFT type were in good
agreement with this theoretical prediction. Optimized spacings
showed oscillatory behavior as a function ofn. The interlayer
spacings were computed to be 3.58 and 3.30 Å whenn is 2 and
3, respectively. The value in the double-layer slab is surprisingly
large in comparison with 3.35 Å observed in the crystalline
region of natural graphite. These are intrinsic features in the
double- and triple-layer graphite slabs. The significant features
of the interlayer spacing in the graphite slabs were derived from
frontier orbital ideas and orbital symmetry concepts.
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Figure 6. Band electronic structures for the (a) double- and (b) triple-
layer graphite slabs from extended Hu¨ckel calculations. The interlayer
spacings are 3.35 Å.

Figure 7. Highest occupied crystal orbital (HOCO) and next highest
occupied crystal orbital (HOCO-1) at the point K in the double- and
triple-layer graphite slabs.
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